115 research outputs found

    Detection of image structures using the Fisher information and the Rao metric

    Get PDF
    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines

    The Fisher-Rao metric for projective transformations of the line

    Get PDF
    A conditional probability density function is defined for measurements arising from a projective transformation of the line. The conditional density is a member of a parameterised family of densities in which the parameter takes values in the three dimensional manifold of projective transformations of the line. The Fisher information of the family defines on the manifold a Riemannian metric known as the Fisher-Rao metric. The Fisher-Rao metric has an approximation which is accurate if the variance of the measurement errors is small. It is shown that the manifold of parameter values has a finite volume under the approximating metric. These results are the basis of a simple algorithm for detecting those projective transformations of the line which are compatible with a given set of measurements. The algorithm searches a finite list of representative parameter values for those values compatible with the measurements. Experiments with the algorithm suggest that it can detect a projective transformation of the line even when the correspondences between the components of the measurements in the domain and the range of the projective transformation are unknown

    Non-parametric hidden conditional random fields for action classification

    Get PDF
    Conditional Random Fields (CRF), a structured prediction method, combines probabilistic graphical models and discriminative classification techniques in order to predict class labels in sequence recognition problems. Its extension the Hidden Conditional Random Fields (HCRF) uses hidden state variables in order to capture intermediate structures. The number of hidden states in an HCRF must be specified a priori. This number is often not known in advance. A non-parametric extension to the HCRF, with the number of hidden states automatically inferred from data, is proposed here. This is a significant advantage over the classical HCRF since it avoids ad hoc model selection procedures. Further, the training and inference procedure is fully Bayesian eliminating the over fitting problem associated with frequentist methods. In particular, our construction is based on scale mixtures of Gaussians as priors over the HCRF parameters and makes use of Hierarchical Dirichlet Process (HDP) and Laplace distribution. The proposed inference procedure uses elliptical slice sampling, a Markov Chain Monte Carlo (MCMC) method, in order to sample optimal and sparse posterior HCRF parameters. The above technique is applied for classifying human actions that occur in depth image sequences – a challenging computer vision problem. Experiments with real world video datasets confirm the efficacy of our classification approach

    Action classification using a discriminative multilevel HDP-HMM

    Get PDF
    We classify human actions occurring in depth image sequences using features based on skeletal joint positions. The action classes are represented by a multi-level Hierarchical Dirichlet Process – Hidden Markov Model (HDP-HMM). The non-parametric HDP-HMM allows the inference of hidden states automatically from training data. The model parameters of each class are formulated as transformations from a shared base distribution, thus promoting the use of unlabelled examples during training and borrowing information across action classes. Further, the parameters are learnt in a discriminative way. We use a normalized gamma process representation of HDP and margin based likelihood functions for this purpose. We sample parameters from the complex posterior distribution induced by our discriminative likelihood function using elliptical slice sampling. Experiments with two different datasets show that action class models learnt using our technique produce good classification results

    On plane-based camera calibration: a general algorithm, singularities, applications

    Get PDF
    We present a general algorithm for plane-based calibration that can deal with arbitrary numbers of views and calibration planes. The algorithm can simultaneously calibrate different views from a camera with variable intrinsic parameters and it is easy to incorporate known values of intrinsic parameters. For some minimal cases, we describe all singularities, naming the parameters that can not be estimated. Experimental results of our method are shown that exhibit the singularities while revealing good performance in non-singular conditions. Several applications of plane-based 3D geometry inference are discussed as wel

    Generalized visual information analysis via tensorial algebra

    Get PDF
    High order data is modeled using matrices whose entries are numerical arrays of a fixed size. These arrays, called t-scalars, form a commutative ring under the convolution product. Matrices with elements in the ring of t-scalars are referred to as t-matrices. The t-matrices can be scaled, added and multiplied in the usual way. There are t-matrix generalizations of positive matrices, orthogonal matrices and Hermitian symmetric matrices. With the t-matrix model, it is possible to generalize many well known matrix algorithms. In particular, the t-matrices are used to generalize the SVD (Singular Value Decomposition), HOSVD (High Order SVD), PCA (Principal Component Analysis), 2DPCA (two Dimensional PCA) and GCA (Grassmannian Component Analysis). The generalized t-matrix algorithms, namely TSVD, THOSVD, TPCA, T2DPCA and TGCA, are applied to low-rank approximation, reconstruction and supervised classification of images. Experiments show that the t-matrix algorithms compare favourably with standard matrix algorithms

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Algorithm-dependent generalization bounds for multi-task learning

    Get PDF
    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization 1 ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1=n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1=T ), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples

    Single and multiple object tracking using a multi-feature joint sparse representation

    Get PDF
    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms
    • …
    corecore